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Abstract
"ON SOLVING BI-CRITERION MATHIMATICAI. PROGRAMS"
Arthur M, Geoffrion

Western Management Science Institute
Tniversity of California, Los Angeles, California 9002k

It often happens in gpplications of mathematical programming that
there are two incommensurste objective functions to be extremized, rather
then Just one. One thus encounters bi-criterion programs of the form

Maximize h(fl(x), f2(X)):
x€X

where h(+,¢) 1is a (nonlinear) increasing utility indicator function
defined on the possible pairs of outcomes of the concave objective functions

f. and f2, and x 1is g decision n-vector constrained to the couvex

il
set X. In this paper it is shown how such progrems cen be numerically
solved if a parasmetric programming algorithm is available for the parametric
sub-problem

Maximize o fl(x) + (1-a) fe(x) , 0<ao<,
x € X

Thus when the parametric sub~problem 1s a parametric linear program, for
example, the nonlinear (and perhaps even non-concave) bi-criterion

program can be solved by a modification of a stock parametric linear
programming rcutine. An inherent advantage of the present approach is that

it yields as a by-product a relevant portion of the "tradeoff curve" between
fl ard f2. When h 18 quasiconcave, as is usually the case, it is shown
that certain computational economies are possible., Outlines of six algorithms
for solving (1) under various special assumptions are presented to illustrate

the application of the theory developed herein. They are based on parametric
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linear programming, Wolfe's method of parametric quadratic programming,
and Geoffrion's method of parametric concave programming. Finally, two
extensions are indicated: one designed to relax the convention that

h must be increasing in each of its arguments rather than decreasing in
one or both, and the other to permit nonlinear scale changes to be made on

the £, for convenlence in solving the parecmetric sub-problem. These

i
extensions greatly extend the domain of applicebility and efficlency of

the present approach.
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ON SOLVING BI-CRITERION MATHEMATICAL PROGRAMS
In this paper we study bi-criterion programming problems of the form

(1) Meximize h(fy(x),  f,(x))
x € X

where fl and f2

(payoff) functions of the n-vector x of decision variables that are

are real-valued concave (see footnote 1) criterion

constrained to lie in a convex subset X of En, and h 1is a real-
valued increasing (i.e., monotone non-decreasing in each argument) ordinal
utility indicator function defined on the pairs of achievable values for
fl and f2. We present a method for solving (1) based on any known para-
metric programming elgorithm for the parametric s*-problem

(P @) Maxémize @ fl(x) + (1-o) fe(x) s

vhere the parzmetﬁr @ varies over the unit interval. When fl and f2
are linear and X 1is a convex polyhedron, for example, (1) is reduced
essentially to a standard parametric linear program even though h is
ncnlinear. Thus parametric linear programming routines can be modified to
solve this important class of nonlinear (even non-concave) programs. When
h is also known to be quasiconcave (i.e., there is a diminishing marginal
rate of subgtitution between fl and fe), a property shared by most
utility indicator functions arising in practice, it is shown how to sub-
stantially reduce the amount of computational work necessary to solve (1).
After the necessary theory is developed, it is used to construct outlines
of six algorithms for solving (1) under various assumptions on f15 fps
and X . Two are tased on paramet:iic linear programming [S], twvo on
Welfoe's method of parametric quadratic programming [13], and two on
Geoffrion's method of parametric concave programming [6]. Finally, two
extensions are presented: one designed to relax the convention that h

must be increasing in each of its arguments rather than decreasing in one

or both, and the other to permit nonlinear changes of scale to bte made



on the f, 80 as to facilitate solving (P These extensions

i d)'
enlarge the domain of successful applicability of the present approach, and
lead to eficient computational algorithms for a large class of mathematical

programs that can be written in the form of (1) (e.g. linear fractional

programs [T,8], target essignment problems [11], and stochastic programs [10]).

Motivation

Although bi-criterion programs may be motivated in terms of consumer
demand theory of classical economi: analysis, the author's interest derives
from a concern for an underdeveloped aspect of modern mathematical pro-
gramming - - how to deal with multiple objective (criterion) functions. In
practical applications of linear and nonlinear programming, alternative
decisions very often have effects that cannot be naturally measured on &
common scale. Consider two such effects, as represented by the criterion
functions fl(x) and fe(x), and let it be desired to maximize both in
the sense that, fora fixed level of one, as much as possible of the other
is desired. Unless fl and f2 happen to attain their maximum simultaneously
on X , some compromise between the two criteria must be worked out. Five
ways of proceeding are: (i) ignore one criterion and maximize the other:
(ii) maximize one criterion subject to the additional constraint that the
other meet or exceed some specified minimal level- (1ii) maximize a
weighted combination of the two criteria (witnout loss of generality, the
result is a problem of the form (Pa) for some fixed @ in the unit
interval- this amounts to forcing one criterion to be measured additively
in the same units as the other): (iv) determine a preference ordering over

the attainable payoff set, represent it by a (usually nonlinear) utility

indicator function h(fl’fz)’ and solve (1): and (v) construct the

.



admissible portion of the attainable payoff set, decide which point in
it is most preferred, and determine a corresponding element of X . 'The

2 .
attainable payoff set is the set of points (fl(x),fe(x)) in & correspording

to some x in X , and the admissible portion of it (briefly, the "edmissible
set") consists of those points with the property that one criterion cai be
increased only at the expense of a decrease in the other.

Procedures (i), (1i) and (iii) are computationally the simplest,
though often they lead to unrealistic reformulations of the original problem.
The fourth approach can be considered a generalization of the third, and
has the potential of being quite realistic. It suffers, however, from
difficulties introduced by the function h . DNot only must h be determined,
presumably by prolonged introspection, but its composition with fl and
f2 can lead to a difficult meximization problem. Assuming that a
computational method is avallable for constructing the admissible set
procedure, (v) obviates the need for determining a preference ordering
over the entire attainable payoff set -- for it is only necessary to
determine the most preferred point of the actual admissible portion
thereof arising in the context of a specific problem. An important side
benefit, not automatically available under any o the other procedures, is
full knowledge of the sensitivity of each criterion to the pursuit of the
other. Fortunately, in a number of important cases the amount of comp-
utational work involved in computing the admissible set is not much greater
than that for (iii).

We shall develop and exploit the intimate relationship between (iii),
(iv), and (v) end the availability of parametric programming algorithms for

(B,) to derive a solution technique for (iv) based on computing & (usually

small) part of the admissible portion of the attainable payoff set. 1In



addition to providing a convenient computetional approach, this method
for solving (l) has, of course, the inherent adventage of yielding as a
by-product a relevant portion of the admissible set. This suggests the
following iLybrid approach: make a rough determination of 4L (preferably
having a simple analytic form), solve the resulting problem (1), and
examine the by-product portion of the admissibtle set to see whether it
provides any reason to doubt tnat the indicated solution is in fact the
most preferred -- if so, then more of the admissible get cen be ccmputed and
a revised solution chosen in the spirit of (v).
DEVELOPMENT

In addition to the assumptions stated in the first paragraph, it
w71ill be convenient to avoid questions of the attainment of suprema by
assuming throughout this paper that the feasible region X 1is compect
(closed and bounded) and non-empty as well as convex, that the £, are
continuous as well as concavey on X, and that h is continuous as well
as increasing on the attainable payoff set f[X]. We denote by f the
vector-valued function (fl, f2), and by f[X] the image in B2 of X
under f . A point x° € X 1is said to be efficient if and only if there
does not exist another point x' € X such that fi(x')Iz fi(xo), i=1,2

with strict inequality holding for at least one 1 ; in other words,

;/ A function f(x) on a convex set X 1s said to be concave if xl,

x“ ¢ X x" # x5, dmply £(txt+ (1-t) x2) > te(x1) + (1-t) £(x°) for
all 0<t< 1. An important property cf concave functions 1s that

a non-negative linear combination of such functions i1s always concave.

This property is not shared by quasiconcave functions (see footnote 4).




if and only if f(xo) is in the admissible set. The set of optimal
solutions of (P,) for a fixed value of @ is denoted by X*(@), and
any n-valued function x*(@) on [0,1] that satisfies x*¥(«) € X*(@) for

each @ 1is called an optimal solution function of (Pa)'

For brevity, the basic assumptions stated above will not be explicitly
mentioned ir the statements of the formal lermas and theorems below.
However, the proofs will be explicit abouvt which assumptions are actually
used.

The r=.:der will find it convenient, in following the development
below, to keep Fig. 1 in mind. It represents, in payoff space, &
simplified typical situation that might occur under cur assumptions. The
attaingble payoff set is the interior of the closed curve ABCDEA, the
admissible set is the heavy curve ABC, and parts of selected level
curves of h have been draown and lsbeled. If x* is optimal in (1),
then obviously h(f(x*)) = 13 and f(x*) is point B.
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The first two lemmas provide the primery motivetion for a
computational appiroach to solving (l) in terms of the parametric program
(p 0!). They can easily be interpreted in terms of TFig. 1.

Lemma 1:
At least one point at which h(#(x)) achieves its maximum over ¥
is efficient.

Proof:
By the compactness of X and the continuity of £ and h, (1) hes
at least one optimal solution xo. Similarly, there exists a point
x' which maximizes fl(x) + fa(x) over X subject tc the additicnal
constraints fi(x) > fi(xo), i =1,2, Now x' 4is easily seen
to be efficient, for the contrary contradicts the choice of x'. Finally
we observe that x' must also solve (1); for x' is feasivle in (1), end
£, (@ ) > fi(xo), 1= 1,2, implies, by the fact that L is increasing,
that h(£(x')) = h(£(x°)).

Lemma 2.
If xo is efficient, then there exists a number o® in the unit
interval such that x° 48 an optimal s~lution of (P o).

Proof':
The piroof uses the ccncavity of f and convexity of X in an essential
way, and is an eprlication of a basic separation property of convex

sets. It can be found, for example, in Kerlin [9] or Geoffrion [6].

Lemmas 1 and 2 imply

Theorem 1: An optimel solution of (1) is found among the optimal

solutions of (P @) for some @ in the unit interval. More precisely,

if a* 1is optimal in




(2) Maximize H(e) ,
a e [0,1]

vhere we define H (@) on the unit interval ty

(3) H(@) = Maximum n(£(x)),
x € X*(a)

then (1) 1is solved by any point x € X*(a*) satisfying h(f(x)) = H(a*).

That H(®) 1s well-defined follows from the non-emptiness and
compactness ¢i X and the continuity of f and h, which imply that
n(£(x)) is continuous on the non-empty ¢nd compact set X*(a), H(«)
achieves 1ts meximum by Lemmss 1 and 2 or by the fact that it can e shown
to be an upper semi-continuous function on the compact set [0,1].

The computational usefulness of (2) depends primarily on how resdily
H(@) can be computed on the unit i.iterval. If it can be computed easily,
then (2) is likely to be a quite efficient means of solving (1), for
finding the maximum of H(@) is but a one-dimensionzl maximization problem.
Before taking up the question of how to compute H(@), we point out an
easy rrrtial converse of Lerma 2 that partly justifies the assertion made
earlier concerning the availsbility of a portion of the admissible set as
a by-product of the calinlations for solving (1).

Lemma 3:

Every point of ¥*(a) is efficient when @ satisfies 0< o < 1,

S.me point of X*(a) is efficient when « = 0 or 1.

Comput ing H(@)

Lev & be fixed in the unit interval. It might be feared that
computing H(@) requires not only finding all optimal solutions of (P )

in order to get X*(@), but also solving a maximization proulem



Y s Tee1sd - - — . e ——_ .|

of the seme form as (1) itself; for it was noted that X*(a@) !5 a
non-empty and compact subset of X, and from the convexity of X and
the concavity of « fl(x) + (1-¢) fe(x) 1t follows that X*(a) is
also convex, Fortunately, however, it turns out that computing H(a)
is not nearly so difficult as this observat:»n would seem to indicate.
The results of the following theorem show that H(@) can usually be
commted on [0,1] with little, if any, extra work beyond finding by
peremetric programming any cptimal solution function x*(@) of (P @)
or [0,1].

Theorem 2:

L. Let @ be fixed in the unit interval, If (P @) has a unique

optimal solution x*(@), then H(@) = h(f(x*(a))).

B. H(0) = h(£(x)) for any efficient point x € X*(0).
H(1l) = u(f(x)) for any efficient point x € X*¥(1).

C. Assume that either f, or f, (or both) is linear on a line

1
segment in X only if it is constant on it. Then for esch «
satisfying 0 < @ < 1, we have
H(@) = h(£(x)) for any rpoint x € X¥(a),

D. Let x*(@) be any optimal solution function for (P @) ca [0,1] that
is continuous everywhere except possibly for a finite number of
simple discontinuities. For each point &' of discontinuity,

define x*(@') and x*(¢') as the left-hand (unless @' = 0) eand

right-hand (unless @' :- 1) 1limits of x*(@) at @', respectively. Then

1. H(a@) = h(f(x*(®))) at every point of continuity in [0,1];
2. H(0) = n(£(x*(0))) 1if 0 is & point of disceontinuiiy;
3. H(1) = h(£(x*(1))) 1f 1 1s a point of discontinuity;



L, If @' 1is a point of discontinuity satisfying 0 < @' < 1, then

(3.1) H(a') = Maximum h(f{ t x* (@') + (1-t) x*(a') )) and
t ¢ [0,1]

(3.2) H(e') = Maximum h(t (x*(@')) + (1-t) £(x*(a')) ).
t ¢ [0,1]

Before undertsking to prove the results of this theorem, we remark
that part A applies, for example, when « fl(x) + (1-0) f2(x) s
gtrictly concave; that part C applies, for example, if one of the f1
is a negative semi-definite quedretic form; end that part D applies to
all parametric programming slgorithms known to the author in the sence
that when they are applicable to (P a), they all produce an optimal solu-
tion function x*(d) that is continuous everywhere on the unit interval
except possibly for a finite number of simple discontinuities.g/ Note
that in part D, to compute H(«@) for a point of discontinuity one has

a choice of solving either of the two one-dimensionsl maximization

problems (3.1) and (3.2).

The burden of the remainder of this subsection 1s to establish the
results of Theorem 4.

Part A 1is trivial., Part B is nearly so, and may be seen as follows.
The efficient points in X*(0) are obviously precisely those that

maximize f. over X*(0). Since f,. 1s constant over X*(0) and

1 2
h is increasing, h(f) 1s maximized over X*(0) ' where f, is
maeximized. Thus H(O) = h(f(x)) for any efficient point x in X*(0).
A similar argument proves the assertion regarding H(1). Toward proving

parts C and D, it is convenient to write (3) in the slternate form

g/ Ir. fact one suspects that the exploitation of possible continuity
in the optimal solution of (P @) as @ varies is necessary for a

successful parametric programming algorithm.
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(4) H(@) = Maximum h(y) ,
y € flx*(a)]

where f[X*(a@)] is the imegs of X*(@) under f and y is a generic
e.ement of Ee.

Lemma U:
For each fixed valve of @ satisfying 0< @< 1, f[X¥a)] 4s either a
singleton or a compect line segment of non-zero lzngth in E2 with ncr-
mal (@, 1-@)., In the latter case, if f(xl) and f(x2) are the end-
proints of the line segment, then f(txl + (1-t)x2) =\t f(xl)+(1-t) f(xg)
for all t satisfying 0< t < 1.
Proof':
Let 0< @< | be fixed. By definition, X*(@) is the optimsl

solution set of (P,). Hence

@ £,(x) + (1-@) 1,(x) = v(@)

for all x ¢ X*(@), where v(®) is the optimal value of (P,).

Hznee f(X*(@)] 1s a subset of the line {y = (yl,yg) ¢ Bo:

@y + (1 - a) Vo = v(@)}. Suppose that f(xl) £ f(xe), where

xl, e X*(a), Let t %be any real number in the unit interval. Then

(txl + (1-t) x2) e X*(a) by convexity, and £, (txl + (1-t) x2) Z_tfi(xl)+

(1-t) fi(xz), 1 = 1,2, by concavity. Hence

v(e) = af (6 + (1-t) x°) + (1-0) g (tx" + (1-t) x°)
L)+ (1) £,(5))
+(10) (tg, (x0) + (1) £(x%) )

x7) + (1-0) £(x7) )

> @ (uf

t(a £

(
1
# (1) (ary(x®) + (1-0) £,(x%))

t v(a) + (1-t) v(&) = v(a) ,

T P oy d —— o - . e m P . =)
. E‘q ~

=
‘
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from which it follows (recall that 0 < 2 < 1) that
(s (1-t) x2) = te(xD)+ (1-t) 2(x°).
It remains only to show that f£[X*(@)] is compact. This follows
imnediately from the continuity of f and the compactness of X*(@).
This lerme implies that to compute H(a) for fixed « satisfying

0< o<1l ii is sufficient to know at most two points in X*@): any
one point if f[X#(e)] 1is a singleton, and any two points ¥ woll 5=
which each map intc & different endpoint otherwise, In the first case,
from (4) we see that H(a@) = hW(f{x)) for any x € X*(@); and in the

second case, we have

(5) H(a) = Maximm_h(t #(x) + (1-t) £(x°) )
t ¢ [0,1]

or, interestingly enough, the alternative

(6) H(e) = Maximum h(£(tx® + (1-t) x2) ).
t ¢ [0,1]

Fiom (4), we see that the nex* lemma implies Th. 2C.
Lemma 5:
If either fl or fa (or both) is linear on a line segment of X
only if it is constant on it, tnen f[X*(a@)] 1s a singleton for each
fixed « satisfying 0< o< 1,
Proof:
let & be fixedy 0 < ad < 1, and let one of the fi’ say fl"
satisfy the hypothesis. Suppose that f[X*(@)] 1s not a singleton.
Then there are points xl, x2 e X#(a) such that f(xl) ¥ t(xe),
and by Lemma 4 f(x) is linear on the line segment running from x- to
x°. By hypothesis, then, £,(x!) = fl(xa), and o £ (x") # fe(x2).
Ir t2(x1) < (resp>) fz(xn) , then xt (resp. x°) is not efficient, which

o 1

contradicts the known efficiency (by Lemme 3) of both x and x.
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Remark: A non-trivial example of a criterion function that is

linecr on a line segment of X only if it is constant on it, is a
negative semi-definite quadratic form. If the other criterion function
is arbitrary, say linear, then rlx*(@)] must ve a singleton even though

X*(a) need not be a single%on.

Toward proving part D of Th.2, we establish

Lemma 6:
Ir x* (@) is any optimal solution function for (P2) on [0,1], then
fl(x* (@) (resp. fe(x*(@)) ) 1is monotonically non-decreasing (resp.

non-increasing) on [0,1].

Proof':

Let «,, @, be such that 0< @ < &,< 1, By the definitions of

AALEE il 2

xx(a) ed x¥(ay),

(1) oy y(xx(@) )+ (1eay) (xM(@) ) € @y £,(x4(2))) + (1) £,(x%(ay))
and

(8) oy £,(x*(ay) ) + (1)) £(xx(wy) ) < @y £)(xx(@))) + (1-2)) £ (x*(a))).

Multiplying (7) by (1-0:1) and (8) by (1-@2) and edding, after rear-
) - $ - - ¥*

rancement one obtains (02 Ul) (fl(x*(al) ) fl(x (02)) ) <0,

from which it follows that fl(x* (°’1) ) < fl(x* (012) ). Similarly,

by multiplying (7) by @, and (8) by @, end edding, one obtains

1
that £(x* (o)) ) > £ (x* (@) ) .

Lerma T:

3/

X*(@) is an upper semi-continuous mapping='on [0,1] .

§/ The definition of upper semi-continuity for set-valued functions
that we use is that of Debreu [3]. As applied to X*(@), upper
semi-continuity at GOG[O,l] means : < o > "do vhere GiE[O,l],
and < x*(a') > = x°, where x*(o') € X*(aj), implies x° € x*(qo) .
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Preof':

Apply Th. 4 of sec. 1.8 of Debreu [3, p. 19] to (Pa) .
Lemma 8.
Tet x*(@) be any ortimalsrlution function for (Pa) that is
continuous on the unit interval except possibly for a finite
number of cimple discontinuities. At each do satisfying 0 < do < 1:
A. If x¥a) 1is continuous at @, then f[X*(do)] is a singleten;

B, If x*«) has a simple discontinuity at @, then E*(Uo) Z

lir  x*(@) and x*¥(a@_ ) = 1lim x*(@) are both in X¥(¥ ), and
o - o- 2 Q- o+ e
o 0
f[X*(do)] is a compact line sg ment (possibly of zero leagih)

with end points f(g*(do) ) and f(i*(ao) ).

At the endpoints of the unit interval:

C. 1lim x*(@) is in X*(0) and is efficient:
a -0+

L, 1lim x*¥(@) 1s in X%(1) and is efficient.
o - 1~

iroof:
et x%(@) be continuous at @ satisfying 0 < @ < 1. Cuppose,
contrary to A., that there exists x° e X*(ao) such that f£(+") # f(x*(ao)).
Since f£(x°) and ‘(x*(do)) must both lie on a line through £(x°)

0 )
4 ] = q * 3 3
with normal (30, 1 &0), either fl(x ) < fl(x (do)) or fl(x (WD)) < il(x ).

In the Zirst case, by the continuicy of fl(x*(d)) at GO there exists
~ nutber ¥ satisfying @ < @ such that fl(x*(&)) > fl(xo). But thiz
contredicces the monotonicity of fl proved in Lemma 6. A similar
eontradiction can be obtained in the second case, This prores part A.
Let x*(ﬂ) have a simple discontinuity at a point Uo catisfying

0 <@ < 1. By Lemna b, f[X*(GO)] is a compact line segment. Denote



1%
lm x*(@) (resp. lim x*(@)) by x*(@) (resp. x* () ). Frem
o - - a-a+ °
o o
Lemma 7, x*(@ ) snd x*(¢) ere in X*(@ ). It remains to show that
f(_x_*(ao) ) and f(z':*(ao) ) ere the endpoints of f[X*(Olo)]. Suppose
the contrary. Then there exists x° € X*(Olo) such that f..(xo) < fl(g*(do))
o - o - u
and f2(x ) > £, 5‘*(0!0)), or fl(x*(ao)) < rl(x ) and fa(x*(do)) -2 fl(x Yo
We shall consider the first case and construct the contradiction that there
exists a value of @ such that

@ £,(%) + (1:0) £,(:%) > @ £,(x¥{@)) + (1) £ (x¥(a)).

A similar construction leads to a contradiction for the second case.

For all @ ¢ (o0,1), ve have a(f,(x°) - £,(x*(a)) )
+ (1-0)(£(x%)-£(x¥(@))) = (@ -a +a) (£,(x°) - £,(x*(a)) )
+ (o s a - @) (£(x°)-£(x¥(@)) = (@ - @) [£,(x°) - £,(x())
+ £(x¥0)) - £,(x°)] + (@ (£,(x°) - £,(xX(a))) + (1-2 )(£,(x°) - £,(x¥(a))))
> (@-a ) [£,(°) - £,(x¥(a)) + £,(x¥(a)) -£,(x°) ],

vhere the last inequality follows from the fact that the quantity in curly
brackets is non-negative (recall that x° solves (Pao)). By the left
continuity of f(x*(@)) at @ and the fect that (f1(“°) - £,(x%a)))) end
(f2 (x* (ao)) - rz( x°)) ere both negative, the desired inequality is
establiched for all @ 1less than but sufficiently near do. This completes
the proof / ;zrt B.
Finally ve prove part C. A similar argument proves part D. By

Lerma 7, x*(0) 2 1lim x*a) is in X*(0). Suppose that x*(0) 1is
a - OF

not efficient. Then there exists a point xo € X such that
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fl(xo) > fl(a.(*(O)) and fa(xo) = fa()'(*(o)) (since x*(0) solves (Po),

fa(xo) > fa(i'(o)) is impossible). Thus x° € X*(0). Let &> 0 bYe
such thet fl(xo) > fl(x*(a)). This contradicts the monotonicity of

f. established in Lemma 6.

1l
Th. 2D 1is ectablished bty parts A and B of Lemma 8 in conjunction
with Lemma U4 and parts C and D of Lemma 8 in conjunction with Th. 2B.

The case in which h is quasiconcave

In this sub-section we introduce an additional hypothesis on the utility
ind4cator function h which permits attention to be restricted to a (hopefully
small) subinterval of [0,1] when (2) is being executed. We assume now that h
is quasiconcavey on the convex hull-sj F of the admissible payoff set.
Quasiconcavity is a weaker property than concavity, and is almost universally
assumed as a property of utility indicator functions in consumer demand theory
of traditional economic analysis. Tor further discussion of quasiconcavity,
see Arrow snd Enthoven [1].

An immediate consequence of this additional hypothesis, in the presence of
our previous assumptions, is that h(f(x)) is now quasiconcave on X (see e.g,
Berge [2, p. 207]). Although (1) now becomes susceptible to various direct
(non-parunetric) approaches to quasiconcave programming, the approach
represented by Th. 1 cen te very efficient when an efficient parametric
prograrming algorithm is available for (P@) -- especially in view of Theorem 3

telow.

4/ n(y) is quasiconcave on the convex set F if and only if (y € F:h(y) > k]
is a convex set for all real k. An equivalent definition is that

n(t y + (1-t) ¥?) > min (a(y), n(y®) for al1 y*, Y2 n Fond0< t < 1.

Simple examples of quasiconcave increasing h are: Min{yl,ya}; R for

¥y2¥p2 0; and yil . y;a for 11, 122 0 and y,,y,> 0.

5/ The convex hull of a subset of Euclidezn space is the smallest convex set
ccentaining thet set.
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Lemma 9
et x* solve (Po'), 1 =0,1,2, vhere 0<a'<a®<a?< 1 Then
there exists a number t, 0 < t <1, such that
f‘i(xo) >'% fi(xl) + (1-t) fi(xz), i=1,2,
Proof:

Cenote f(x*) by fi, i=0,1,2, Ve assume that fo does not coincide with

either :f‘:L or f‘2, for otherwise the conclusion of the lemma would be
trivially true. Suppose that the conclusion is false. Then there does

nct exist a number t > O that satisfies the following system of irecnalities

i 2 5 2
(9.1) (£ - £]) < (2] - £])
(9.2)  tlgp - £2) < (£ - £3)
(9.3) Bl S e

By a ctandard thcorem on non-negative solutions to linear inequalities

[k, p, 47], there exist non-negstive real numbers s., s., and s, such tha*
1’ ®2 3

12 1.2
\ - o 4 - s e}
(10) (£ - £7) cg + (£ - £) s+ 320
and
/ O _ o2 + (0 _ ¢€ +
(11) (ll £1) s, (f2 f5) 8, 83 < 0.

Multiplying (11) by -1 and adding the vesult to (10), one obtains

1

(12) (fi - f?_) 5. + (£,

O

Using the fact that s3> 0, from (11) one obtains

. 2 0 2
(18)N (e, =l ro) o R l(F

0
1 - f2) s, > 0.
cannot both vanish. Dividing (12) and (13) by (sl A 32),

How s 4
Now 1 aad 85
recalling that s,y 5,> 0, end defining € as sl/(s

(1) (¢
(IS (2

+ ins
1 82), one obtain:

- £])E+ (f; - £2) (1 - §)> o,
2
2

-

- £))8+ (£5 - £2) (1 - §) > 0,
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end 0<E<1,
Detine v (@) =@ fi*' (1-a) £, 5=0,1,2
By the definitions o?f xi, = Oy, 2; vj(oﬂ) Z_Vk(aj) for j =0,1,2 and

k # j. Thus

(16) v(a) - v (") 20
(1) vy(e®) - v (e?) <0
(18)  v,(@%) - v (e®) 2 0

(19) vg(ao)

Now (14%) and (15) may be written as

v (&) <o,

(20) vl(

(21)  v,(3) - v (§) > o.

§) - vo(g) >\ 0%

By the linearity of vl(d) - vo(w) in &, (16), (17), and (20) imply
that & < o° (recall that & < &°). Similarly, (18), (19), ard (21)
imply that £ > ao. This contradicticn implies that the conclusion
of the lermmg must be true,
Thecrem 3:
Assvze that h 1is quasicorcave on F. If x*(o) is any optimal
solation function of (Pa) en [0,1], then h{f(x*(e))) is quasicorcave
on (0,1],
Proof:
Let O g_al <o <o <1, and let xle x*(ai), i=0,1,2. 3By
Lemma 9, therc exists a number t, 0 <t < 1, such that
%)

£(x%) 3t fi(x‘) + (1-t) £,(x%), 1= 1,2

thus h(£(x°)) > b (& £(x}) + (1-t) £(x°))

> Min Ul(f(xl)hlﬁf(xg))],



18

vhere the first inequality holds because h 1is increasing and
the second becauze it is quasiconcave. This shows that h(f(x*(2)))

is quasiconcave on [0,1].

Theorem 3 often makes possible a considerable simplification
in the maximization of H(@) cn the unit interval, by allowing

part of the interval to be igrored by virtue of the easy

Corollary 3.1:

If xl ex* (

al) and = GX*(GE), where o < o , then
h(f(xl)) - h(f(xe)) < 0 (resp. > 0) implies that H(@) cannot

echieve its meximum at « < ot (resp. o> 02).

EXTMPLARY ALGORITHMS

In this section we apply the results of the last (principally Part
D of Th. 2 and Cor. 3.1) to show how known parasmetric programming algorithms
can be used to solve (1) in the manner suggested by Th. 1. For illust-
rative purposes we choose parametric linear programming [5], Wolfe's
method of parametric quadratic programming [13], and Geoffrion's method
of parametric concave progiramming (6. The six algorithms presented
below are given in outline form, with no attempt made to give details of

the most eificient orgenization oi the ccugputations.

tevametric Linear Programming

In this subsection we assume that fl and f2 are linear end that

X 1is cdetermined " - linear ineguulity constraints, so that parametric
linen - programming ‘:an be used to produce an optimal solution function

v¥{a) for (P2) on [0,1], It 43 well known that x*(a) will be

g
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piecewise constant, and that without loss of gencrslity it can te

assumed to be of the form

+
x*(a) =xi for O’isa’< ottt y 1 =0,.00y N,

,
where 0< o < ... < <1 (N finite and possibly O) are the

) v
C CYI\' 1 - 1.

points of discontinuity and ve have put @ = 0 and

. . .
x*(1) = L . Thus by Th. 2D we have H(@) = h(f(x')) for o < o < o' l,

Also,

1 = 0,000, , HO) = n(£(x°)) , and H(1) = h(f(xN)). If N =0, then

obviously x° 1s optimal in (1). If N > 1, then we have z(al) o et

and i*(di) =% for 1 = 1,..., {; consequently, (3.1) and (3.2)

become

(22)  H(c') = Maximum h(£(t 71 + (1-t) x* ))
tel0,1]

(23)  H(¢') = Maxtmun h(t £(271) + (1-t) £(x%) )

telo0,1]

for 1=1,..., N. Since x*(«) 1is pilecewise constant we nee that

vhen 11> 1, H(a) achieves its maximum at a point of discontinuity a{*;

Ly (1-t*) »** 15 optimal in (1), vhere

-1

therefore the point t* X *

t* psaticfies H(@ %) = n(f( t* x'* + (1-t%) e }) or, alternatively,

1, -1
- )

H(o %) = h(t* £/x + (1-t%) £(x*%) ) (cf. (5) and (6)). Ve thus

obtain the following algorithm,

Algeorithm 1

Step 1. Sclve (Pa) %ty parametric linesr programming to obtain o
and xi, 1 = 0,...,, computing the quantities H(o),

i=1,..., I by (22) or (23) as the calculations progress.
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If § =0, stop: x_ is optimal in (1), If ©> 1,
then go to step 2.

Step 2. Let H(dl*) be the largest of the quantities computed

at step 1. Then t* e

+ (1-t%) et is optimal in
(1), where t* 1is defincd o5 in the text so as to achieve

H(a™*). Stop.

IT 1 1is quasicencave, then due to the consequent quasiconcavity
of H(o) it is rarely necessary to solve (P¥) on the entire unit
‘nterval, or to compute all of thc H(ai). in Algorithm 2, which
exploits the quasiconcavity cf n, it is assured for simplicity of
exposition that the parameter & increases, starting from the value
0., A similar algorithm can easily be constructed to cover the more
general case in which « has an arbitrary starting value and can
decreasc as well as increase (the closer the starting velue is to the
one that maximizes H(®), the less work is required to solve (1) by

this approach). This came remark applies to Algorithms 4 and 6,

Algorithm 2

Step 1. Solve (Po) ‘o obtain x . PutI =0 ard I=1.

Step 2. Solve (Pa) by parametric linear progremming as o in-

oitl is

creases above OI until either o =1
encountered. In the first case, go to step 4; in the

T+
sccond, determine x~ 1 and go to step 3.

+
Step 3. Compare h(f(xI)) with h(f(xI l)):
+
a. If h(f(xI)) < h(f(xI l)), increase I by 1,

put l =], ¢nG return to step 2-
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b, If h(f(xI)) = h(f(xI+1)), increese I by 1 end

return to step 2:

co If h(£(x)) > u(£(x*"1)), increase I by 1 and

go to step U,

Step 4. If I =0, stop; x° 1is optimel in (1), If I> 1, then
compute by (22) or (23) and find the largest of the
quentities H(o') (I< 1< I). If the maximum is achieved
for H(Gi*), then t* xi* 1+ (1-t*) X% is optimal in
(1), where t* is defined as sbove so as to achieve

H(Gi*). Stop.

Remark:

In both of these algorithms, a one-dimensional maximization
problem ((22) or (23)) must be solved each time an H(a;) is
required. Frequently these cne-dimensional problems are trivial: but
even when they are not, variouvs methods are available (i2]. When

h 1is queasiconcave, Fibonnacci search is particularly attractive.

Parsnetric Quadratic Programming

In this subsection w~ assume that fl(x) is linear, that f2(x)

is a negative semi-definite quadratic form, and that X 1is determined
by linear inequality constraints. Then (P2) can be solved on [0.1]
by Wolfe's method of parametric quadratic programming (his so-called
"long form") [13], among others, for an optimal solution function
x*(@) that is continuous on [0,1). By Th. 2.D.1, H(a) =
h(f{x*(@))) on [0,1], and therefore the point x* 4n the image of
(0,1] under x*(@) which maximizee h(f(x)) 1s also optimal in (1).

Ilow from Wolfe's results it follows eesily that this image set is
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+ +
of the form 1l=Jo x:",x:l 1 » where xi,xi * is a line segrent in
+
E® with endpoints xi and x1 4 and N is a finite positive

intege». The points xi(i = 0,1ye0e,N + 1) are determirecd serially,
in order of increasing superscript, from the modified Simplex procedure
employed by Wolfe 4 (x! = xx(d ") for certain ot satisfying

o= a° < dl < 00 < J" < O}‘H'l = 1); a termination eignal accompanies

the determination of le. Putting thecse observations together,

we obtain
Algorithm 3
Step 1. Solve (Fa) on [0,1] by Wolfe's method to obtain
i

Xy 1 =0,1,.00yN+ 1, computing the quantities

1 = Maximum n(e(A x2"2 4 (1-1) xV)), 1 = 1,...,01,
0K 1

as the calculations procecd.

Step 2. If e is the largest of the i (ties are immaterial)

1,-1

then A xix"l 4 (120) x'* 15 optimal in (1), where

A* satisfies Ti# = n(g(A* xi* "1+ (1-a%) x1%)) |

If h 1is quaciconcave, then so is h(f(x*(a))), and an im-
vroved version of Algorithm 3 can be constructed that bears much

the same relation to it as Algorithm 2 does to Algorithm 1:

Algorithm 4

Step 1. Solve (Po) and obtain x° by Wolfe's method. Put

I=1 ani I=0.

6/ Actually, Wolfe's algoritham 1s addressed to a reparametcrized
version of (Pa) that uses A/A+*1 on [0,2] in place of «
on [0,1]. But this ceuses no essential difficulty.
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Step2. If I =N+ 1, go to step 4: otherwise, determine
+
xI 1 by Wolfe's method and go to step 3.

Step 3. Compare h(t(xI)) with h(f(x1+l)):

a. If h(f(xI)) < h(f(x1+1)), increase I by 1,
put I = I, and return to step 2;
b. If n(f(x})) = n(2(x™1)), increase I vy 1
and return to step 2;
P ! I+l
ce If h(f{x"))> h(£(x" 7)), increase I by 1 and

go to step k.

Step 4. Compute the quentities W= Ma:xrilmum h(f(’\xi'l + (1-2) xi)),
oL

I<1€1.,. I 1% 1g the largest (tles are immaterial),

then A x %"l 4 (1)) x'* s optimal in (1), vhers ¥

satisfies M" = h (£(A* x**"1 4+ (1-1) xi%)) .

The remark following Algoriithm 2 is appropriate here also with
regard to computing the TI", especially vhen h 1is quasiconcave ...

i-1

for then h(f(A x"~ + (1-}) xi)) is quasiconcave in A on [0,1].

Parametric Concave Programming
When X i3 determincd by concave inequality (Z) constraints
ard certain edditional hypotheses are satisfied, Geoffrion'’s method
[6] cen be used to solve (Pa) on [0,1]. The x*(!) so produced
ie cortinuous, and so by Th., 2.D.1. it follows that H(a) = h(f(xz*(a)))

oan [0,1] .



Algorithm 5

Solve (P2) on [0,1] by Geoffricn's method to obtain
x*(@), all the vhile evaluating h(f(x*(®))), Determine the
value % a{ vihich h(f(x*(«))) achieves its maximum on [0,1] .

Then x* (¢*) is optimal in (1).

If h 1is quasiconcave, then ss before (Pa) does not

ordinarily have to be solved on the entire unit interval:
Algorithm 6

Step 1. Solve (Pp) by Geoffrion's or some other mcthod to

obtain x*(0).

Step 2. Determinc x*(«¢) 25 @ increases above O by
Geoffrion's method, all the while evaluating
h(f(x*(a))), until a value @* 1is encountered sbove
vhich h(f(x*(2@))) Dvegins to decreuse. Then x#(a*)

s optimal in (1).

Algoriihue 5 and 6 are not limited to Geoffrion's unethod, of
course, but aprly equally well to any parametric concave progreomming
algorithm that produces a continuous optimal solution x*(@) vo

(Pa) on (0,1].

EXTENSIONS

In mathematical progrerming with one objective function, the
convention is usually made to discuss only maximization problems

or only minimization problicms, for the resultsfor one class of
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problems are directly applicable to the other when appropriate sign
changes are made. The same situation prcvails here. We have chosen
to discuss the case where both fi
results are applicable to the other cases (min fl’ min fa; min f

are being maximized, but our
v
max f,: max f,, min fa) with srpropriate sign changes. If h is
increasing in f, but decreasing in £y, for example, define

£, es - f, end h'(f,,f3) es h(fy,-(-fy)). Then h' 1is
increasing in both f, and f}, and if f} is concave (this is
true if end only if f, is a convex function) then our results
apply if h' is used in place of h and fé is used in place
of f2 . As an example of the application of this idea, consider
the "linear fractional" programming problem.:’_/

Maximize (cx + Y)/(dx + &) subject to Ax < b, where ¢ and d
x>0 =

are n-vectors, b is an m-vector, A is sn m x n matrix, and Y and

8§ are scalars. We assume for simplicity that rl(x) Scx+Y and
f,(x) & dx + © ere strictly positive for all feasible x. Defining

k = f,(x)/1,(x), we observe that h is increasing in f,(x) but decrcasing
in tz(x). Thus we consider h' and f,', defined as above, in plece of
h and 1’2. Since it is easily seen that h' is quasiconcave and that
£, and f; = (-ta)are linear, Algorithm 2 applics, thereby providing a

procedure for solving the linear fractional program by means of paranetric

7/ The linear fractional progremming problem is due to Isbell and
Marlow [7, ». 82]. Several methodsfor solving such programs ere
available, most of thexm based on linear progremming techniques.
For a brief guide to ihe literature, see Joksch [8, p. 197].
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lineer programing.y Note that (22) and (23), which are used by

Algorithm 2, are particularly simple in this case. If dx + & is replaced
by & positive semi-definite quadratic form, then by similar reasoning we
see that Algorithm 4 provides a method for "linear/quedratic fractional"
programming.,

A trick sometimes useful in ordinary mathematical programming is to
perform a nonlinear change of scale on the criterion function in order
to maeke it concave (assuming that it is to be meximized) or of a simpler
functional form, so that an aveileble algorithm can be applied. For

x
example, to minimize Ill;'l q_l"t over x> O satisfying Ax < b, where

n xi) o
1=1 Y

q >0 (1 =1,...,n), it is more convenient to minimize 1n(l

E‘;gl xi(ln qi) instead because then linear programming can be used. In

the remainder of this section we shall show that this idea can be used to

greatly extend the power of the present method of bi-criterion programming.
Define the scale-modified parametric sub-problem

(Fa) Max:l;lize o g, (f,(x)) + (1-a)g,(£,(x)),
x €

where the g, are henceforth assumed to be strictly increasing, differentiable
functions defined at least on 1’1[)(]. We shall also assume that gi(fi(x))
is concave (a sufficient but not necessary condition for which is that
8, be concave) and for simplicity that the fi are differentieble, We derote
the optimal solution set of (¥ a) by ;(0).
In the sequel h 48 not assumed to be quasiconcave except in Theorem

3A. We shall obtain counterparts of Lemmas 2 and 3 and Theorems 1,2, and 3.
lemma 2A:

1f x° is efficient, then there exists a number @® in the unit intervel

o

such that x  1is an optimal solution of (P do).

8/ The assumption that (rl(x), fa(x)) is in the interior of the positive
orthant for all feasible x can be relaxed, at the expense of slightly
modifying Algorithm 2, to the minimal requirement that dx + 6 ¢ 0
for all feasible x.



Proof:
Since x° 1is efficient, by Lemma 2 there exists a number v in the
unit interval such that x° is an optimal solution of (Pv). Because
of the concavity of vfl(x) + (1-v) fz(x),
we therefore have
(24) Vx(v fl(x) + (1-v) fz(x)) (x=x°) <0, vxe€eX,

vhere V& is the gradient operator. Put
(v/g,(£,(x°)))
(v/gy (£,(xIM+ ((1-v)/gy (£(x°))) 5

vhere g} (fi(xo)) is the first derivative of g, evaluated av fi(vn).
Since g, 1s strictly increasing, ve have gi(fi(xo)) >0, 1=1,2,
Hence db is in the unit interval. To show that x° is optimal in
(; do), because of the concavity of aogl(fl(x)) + (1-05) gz(fa(x)) on
X it is equivalent to show

(25) Y, (2 (£,(x%) + (1-0,) gy(£,(x")) (x-x") < 0, ¥ x ¢ X

By the definition of @ , the gradient vector in (25) is

(1/8) ((v/ey (fl(x°))) si(fl(x°)) fol(x°) +

((1-v)/ g} (£5(x°))) gp(£,(x°)} ¥, £,(x")],
vhere B s (v/g] (£,(x°))) + ((1-v)/g, (£,(x%))).
Upon cancelling and observing that 8> 0, we see that (24) follows
from (25).
Lemmas 1 &nd 2A imply
Theorem 1A:
An optimal solution of (1) is found among the optimal solutions of

(§ @) for some @ in the unit interval. More precisely, if a¥* ig
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mal in

Maximize f(«) ,
o ¢ [0,1]

where we define

(34)

H (o) = Maximum h(£(x)),
x ¢ X (@)

then (1) is solved by any point x € X (a*)

sati

sfying h(£(x)) = H (a*),

We also have

Lemma 3A:

Every point of X(@) is efficient when ¢ sgtisfies 0< @< 1. Some

point of X (@) is efficient when @ = O or 1.

To knov how to compute ﬁ(d) economically, we require the following

version of Th. 2.

Theorem 2A:

A.

cC.

D.

let @ be fixed in [0,1). If (P @) hes a uniquz optimal solution
#@), then H (a) = n{£{x (@))).
H (0) = n(£(x)) for any efficient point x € X (0).

H(1) = h(f(x)) for any efficient point x € X ’1).

Assume that gl( fl(x)) or 32(1’2(::)) or both 1s linear on a line
segment of X only if it is constant on it. Then for each «@
satisfying 0 < @< 1, we have H(2) = h(f(x)) for any point

x €X (@),

Let x(@) be any optimal solution function for (P @) on {0,1]
that is continuous everywhere except possibly for a finite number

number of simple discontinuities. For each point ¢' of discontinuity,
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define x (@') and x (@) as the left-hand (unless @' = 9) and

right-hand (unless @'= 1) limits of x (@) at @', respectively.

Then
1. H (@) = h(£(X(2))) at every point of continuity in [0,1].
2. H (0) = h(£(x (0)) ) if O is e point of discontinuity.

3. H (1) =n(£(x (0)) ) if 1 is a point of discontinuity.

4., If o' is a point of discontinuity satisfying 0 < a' < 1, then

(3.18) (') = Maximm h(£(t %(@') + (1-t) % (@'))) eand
t € [0,1]

(3.24) i (') = Maximm h(¢ {ta(£(Z(@'))) + (1-t) g(£(Z(¢"))) )).
t ¢ [0,1]

Proof:

The proof of this theorem will not be given in detall here, inasmuch

as it follows closely that of Th. 2. The key observation i1s that

(P @) has all of the properties that (P @) does, if we view g(f) in

(f @) as taking the place of f in {P @), Thus Lemmas 4 through 8

hold with regard to (5 @) if their statements are modified by replacing

everywhere *- guperscripts by tildes and f by g(f). To relate the

results regarding (5 @) to h(£(x(®))), it is necessary to observe that

n(£(x)) = n(g " e(£(x)))), vhere g™' = (311, s;l). The (single-valued)

inverse functions g;]' exist because the 81 are strictly increasing.
Theorem 3A:

Assume that h is quasiconcave on F. If x(@) is any optimal solution

unetion of (P @) on [0,1], then h(£(2(2))) is quasiconcave on [0,1].
Proof:

1 0 2 i

Let Ofl, Ofo, and 012 satisfy 0< ¥ <o <a <1, and let x  be

in E(?), 4 =8,2,0, Ir 2s®) = ) or 2a")= 2l"), hen
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obviously h(£(x°)) > Min (h( £(x%)), h(£(x2))). We shall skow that
this conclusion holds when f(x°) # f(xl) and £(x°) # f(xa), therebv
showing that h(f(x(@))) is quasiconcave on [0,1].

If 0<at<a®<1, then x' and x° are efficient and by
Lemma 2 there exist ?\1, \° in the unit interval such that
xt e X*( 7\1), i =0,1. It follows from Lemma 6A, which implies that
g(£(%(2))) is monotone in @, the fact that f£(x°) # t‘(xl), the

strictly increasing nature of g, and ol < o®, that A< °, 1f

ot = 0, thzn clearly xl ¢ X*(0). Thus for O < Adcad® <1 we
heve the existence of AL ana A° satisfying 0 < A<l <1 such

that x e X*( li), i = 0,1. By similar argumente we obtain thal

for 0< a® < o? < 1 there erists o satisfying A° < ka <1
such that X2 ¢ X#( )\2). Applying Lemma 9, we find that there exists
a number t, 0<t <1, such that £,(x°)> tfi(xl) + (1-t) fi(xe),
i=1,2. Hence
n(£(x°)) > n(t £(x) + [1-t) £(x°))
> Min (0 (£(x}), n(£(x?)) ),
where the first inequality holds because h is increasing and the

second because h is quasiconcave. The proof is compete.

Theorems 1A, 2A, and 3A can be used in the same menner as were

Theorems 1, 2, and 3 to construct algorithms for solving (1) via (P @),

The freedom to perform nonlinear scale changes on the fi can be used to

extend the applicability of the known parametric programniing algorithms.

As an exsuple, consider the problem



31

m 7 +ov

(26) Minimize 521 qlJ 5

n Xj
T g
x>0 -

v
1 iy

subject to Ax < b ,

where the qij and v's are strictly positive. Problems of this sort
arise in redundancy allocation and target - assignment contexts., Vhile
(26) can be approximated as a lirearly separable convex program bty a1
appropriate change of variables (11, p. 350], we shall indicate how it can
be #olved via parametric linear programming. By making the obvious

identifications

n X3
3=1 %

[3

———
fi(x) vl o

X=1x>0: Ax<bl),
we see that (26) is a problem of the form (1). The obvious scale change
to apply to the f, is the logarithmic one: gi(y/ = - 1n (-y), i = 1,2,
Theorems 1A, 2A, and 3A then apply, and Algorithm 2 can be used to
solve (1) by paremetric linear programming applied to the linear
sub-problem

(27) Maximize 2 & _ x. (-1n q,
x> 0 J=1 7 iJ 17

subject to Ax < b.

The ctochastic prozramming model of Kataoka [10] can te solved Ty

a scale-change that leads to the applicability of Algorithm 4.
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